INFRARED INTENSITIES AS A MEASURE OF INTRAMOLECULAR INTERACTIONS

XIX.* ELECTRONIC INTERACTIONS IN SUBSTITUTED PHENYL- AND BENZYLTRIMETHYLSILANES

N. C. CUTRESS, A. R. KATRITZKY,

School of Chemical Sciences, University of East Anglia, Norwich NOR 88C (Great Britain) C. EABORN, D. R. M. WALTON, School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) and R. D. TOPSOM School of Physical Sciences, La Trobe University, Melbourne (Australia) (Received March 27th, 1972)

SUMMARY

An infrared method has been used to establish that the SiMe₃ group is a weak resonance acceptor in the ground state when joined to a benzene ring. This acceptance is considerably exalted when resonance donors are attached to the *para* position. The relatively strong resonance donation of a CH_2SiMe_3 group is explicable in terms of hyperconjugation.

INTRODUCTION

Considerable interest continues to be shown²⁻¹⁵ in the electronic interactions between unsaturated systems and MR₃ or CH₂MR₃ substituents (M = Si, Ge, Sn, Pb). Some controversy exists both as to the relative magnitude of inductive and $p_{\pi}-d_{\pi}$ effects for the MR₃ systems^{5.7.8.12,15,16} and as to the mechanism leading to the fairly large electron-donating influence of CH₂MR₃ groups^{3,7,9,10,17-21}. However, many of the investigating techniques employed, such as reactivity and equilibrium measurements or the determination of ¹⁹F NMR shifts, involve the need for another substituent which is added to the unsaturated system to act as a probe. This second substituent can interfere with the conjugation of, say, an MR₃ group with the unsaturated system and thus the conclusion reached is often not independent of the method employed²². We therefore used our previously described^{4,23} infrared method to investigate such interactions.

DISCUSSION

Monosubstituted benzenes (Table 1)

The intensities have been treated using eqn. $(1)^{23}$ to derive substituted σ_R^o values.

* For Part XVIII see ref. 1.

J. Organometal. Chem., 43 (1972)

Compound	Solvent	$\pm \sigma_{R}^{0}$ (calcd. ^a)	1600 band 1585 band		A ^c	ε ^d	1500	band		
			v	£_A ^b	v	EA			v	E _A
PhSiMe ₃	CCl ₄	0.0	1590	5	1574	2	100 ^e	31	1482	7
PhSiMe ₂ (SiMe ₃)	CCl₄	0.04	1586	2	1574	2	135	ſ	1485	20
$PhSiMe(SiMe_3)_2$	CCI ₄	0.06	1598	2	1583	4	175	ſ	1483	30
PhCH ₂ SiMe,	CCl₄	0.20	1598	46	1580	8	780	550	1491	93
PhCH (SiMe ₃) ₂	CCl ₄	0.24	1597	70	1575	13	1115	700	9	9
$PhC(SiMe_3)_3$	CCl₄	0.24	1589	52	1572	12	1100	625	g	ø
PhGeMe ₃	CCl₄	0.05	1574	3	h	h	140;	46	1484	29
PhSnMe ₃	CCl₄	0.07	1578	4	h	h	200	37	1479	27
PhCH ₂ SnMe ₃	CCl₄	0.26	1598	85	1578	12	1255	1450	1489	178

SPECTRAL DATA AND CALCULATED of VALUES FOR MONOSUBSTITUTED BENZENES

^a Calculated using $\sigma_{R}^{0} = [(A-100)/17600]^{\frac{1}{2}}$. ^b Peak extinction coefficient; $\epsilon_{A} = a_{max}/cl$ where a_{max} is absorbance at peak maximum, c is concentration in moles per litre and l is cell path length in cm. ^c The integrated intensity of the 1600 and 1585 cm⁻¹ band $A = \sum a_{max}/cl$. ^d ϵ is an estimate of the integrated intensity given by $\epsilon = \epsilon_{A} \Delta v^{\frac{1}{4}}$. ^e Previous value A = 95, see ref. 4. ^f Too complex to be meaningful. ^g Not measured. ^h No observable 2nd band. ⁱ Previous value A = 257, see ref. 4; we believe the previous value to be wrong because it gives a wrong frequency of v_{16a} according to lit. values⁴⁹.

Because of variation in the overtone contribution to the band, σ_R^0 values in the range +0.1 to -0.1 are subject to significant errors, which are at their largest for values near zero²³. For such substituents, more reliable σ_R^0 values are obtainable from *meta*-disubstituted benzenes²⁴, or from substituted ethylenes²⁵. The magnitude of the σ_R^0 value can be deduced from the monosubstituted benzene or ethylene, but to obtain the sign, *meta*-disubstituted compounds must be used.

$$A_{\rm mono} = 17600 (\sigma_{\rm R}^{\rm o})^2 + 100 \tag{1}$$

The substituents MMe₃ (M=Si, Ge, Sn) disclose small σ_R^0 values which are compared in Table 2 with values derived from available ¹⁹F NMR results^{2,3}. Although these NMR values indicate that Me₃Ge and Me₃Sn are weak electron acceptors, our earlier results indicated⁴ that the apparent electron-acceptor character arises from the presence of substituent-substituent interaction in the *p*-fluorophenyl compounds and that, in the absence of such interactions, whereas Me₃Si is a π electron acceptor, Me₃Ge and Me₃Sn are weak π -electron donors in the parent C₆H₅-

TABLE 2

COMPARISON OF IR AND ¹⁹ F	NMR DER	IVED $\sigma_{\rm R}^0$	VALUES
--------------------------------------	---------	-------------------------	--------

	$\sigma_{\rm R}^{\rm o}(IR)$	$\sigma_{\rm R}^0 (NMR)^a$	$\sigma_{\rm R}^0 (NMR)^b$
SiMe ₃	$+0.02^{\circ}$	+ 0.04	+ 0.046
GeMe ₃	$\pm0.05^{d}, -0.08^{o}$	+ 0.01	+ 0.006
SnMe ₃	$\pm0.07^{d}, -0.10^{o}$	+ 0.01	+ 0.014

^a See ref. 2. ^b See ref. 3. ^c From meta compounds (see text). ^d From mono-substituted compounds. ^e From meta-fluoro derivatives (ref. 4).

J. Organometal. Chem., 43 (1972)

MMe₃ derivatives. Previous evidence from dipole moments²⁶, UV¹⁸, and ESR²⁷, indicates that the order of π -acceptance is Si > Ge > Sn. Evidently hyperconjugation, involving M-Me electron release, nearly balances this acceptance, so that the resulting numerically small value of σ_R^0 may be positive or negative. ¹⁹F NMR work by Adcock¹⁵ on MMe₃-fluoronaphthalenes where direct conjugation is impeded indicates that SiMe₃ is a nett weak acceptor and GeMe₃ and SnMe₃ are weak electron donors. Each MMe₃ substituent is usually thought to engage in $d_{\pi}-p_{\pi}$ electron withdrawal, though Pitt^{8,9} has suggested that such effects are small in the ground states of the monosubstituted benzenes.

For the substituents $CH_2MMe_3(M=Si, Sn)$, the intensities of the benzyl compounds indicate large σ_R^0 values which agree well with the results obtained by NMR³:

	$\sigma_{\rm R}^0(IR)$	$\sigma_{\rm R}^o(NMR)$
PhCH ₂ SiMe ₃ PhCH ₂ SnMe ₃	$\pm 0.20 \\ \pm 0.26$	-0.20 -0.23

Powerful electron release by Me₃MCH₂ and related groups has previously been revealed by spectroscopic studies of appropriately substituted ethylenes and benzenes^{5,17,20,28-35}. For Me₃SiCH₂, the ($\sigma^+-\sigma$) value of -0.25 lies between those of *p*-OMe -0.51 and *p*-Me -0.14^6 . Kitching and Adcock³ favour an enhanced π inductive effect explanation based on the observed order of the polarity of the Me₃M- δ^- CH₂ bond. The present results indicate significant hyperconjugation from the

metal-CH₂ bond even in the ground state, as already suggested by Eaborn¹⁷, although Traylor and his colleagues have recently concluded that such hyperconjugation is fairly unimportant for neutral molecules⁴⁸. Nagy¹⁸ has proposed an "extended" hyperconjugation picture with the *d*-orbital of the metal overlapping with a pseudo C=(H₂) π orbital as in (I). (This has been criticized by Ramsev¹⁹.)

The large diffuse d orbitals of the metal may extend far enough through space to effectively overlap the π -orbitals of the ring (and such an explanation was used by Jaffé³⁶ to explain the UV spectra of alkyl sulphides and vinyl and allyl derivatives of Group $IV^{29,30}$) but this type of interaction should manifest itself in electron withdrawal from the ring. Powerful support for the hyperconjugative electron release mechanism has recently been adduced^{8,10,11} from ionisation potential and charge transfer measurements on Me₃M-CH₂ systems.

For the substituents $CH_{3-x}(SiMe_3)_x(x=1,2,3)$ the effect on the σ_R^0 of replacing hydrogen in the CH₃ group of toluene by Me₃Si groups is in complete agreement with the trend predicted by Eaborn³⁷ based upon minimising steric interactions and then considering the effective overlap of the Me₃Si-C bonds with the p_{π} -orbitals of the ring.

J. Organometal. Chem., 43 (1972)

The σ_R^0 magnitudes are in good agreement with the values obtained by Eaborn *et al.*, from a ¹⁹F NMR study²¹:

	x=1	x=2	x=3
$\sigma_{\rm R}^{\rm 0}({ m IR}) \sigma^{\rm 0}({ m NMR})$	$\pm 0.20 - 0.200$	$\pm 0.24 - 0.224$	± 0.24 -0.245

The strong conjugative electron release from the groups $(Me_3Si)_xCH_{3-x}(x=1,2,3)$ is also shown by their $(\sigma^+ - \sigma)$ values of -0.25, -0.29, -0.25 respectively⁶.

The intensities of the compounds $PhSiMe_{(3-x)}(SiMe_3)_x (x=1 \text{ or } 2)$ are low and hence the derived σ_R^0 values (cf. ± 0.04 , ± 0.06) are subject to error. Their sign is uncertain, negative signs could be explained as arising from electron release³⁸ by hyperconjugation from the Me₃Si-Si bonds and positive signs from enhanced $(d_{\pi}-p_{\pi})^5$ bonding between the aromatic ring and the attached silicon atom. However, the $(\sigma^- - \sigma)$ values indicate that the electron withdrawal by the group Me₃SiSiMe₂ is greater than that by Me₃Si³⁹.

meta-Disubstituted benzenes

$$A_{meta} = 19000 \left[(\sigma_{R^1}^0)^2 + (\sigma_{R^2}^0)^2 + (\sigma_{R^1}^0 \cdot \sigma_{R^2}^0) + 340 \right]$$
(2)

Spectral data for the compounds $XC_6H_4SiMe_3$ in Table 3 were treated by eqn. (2)²⁴ which was solved for the experimental intensities treating $\sigma_R^0(SiMe_3)$ as an unknown. This shows clearly the positive sign for $\sigma_R^0(SiMe_3)$ and hence confirms the resonance acceptor properties of this group: the numerical value of $\sigma_R^0(SiMe_3) =$

TABLE 3

SPECTRAL DATA FOR meta-SUBSTITUTED PHENYLTRIMETHYLSILANES

Substituent	σ_{R}^{0a}	1600 b	and	1500 b	and	$A^{c} = \overline{R}_{m}^{d} = f_{m}^{f}$		$\int_{m} (\sigma_{R}^{0})^{e}$
		v	EA B	v	EA			
OMe ^f	-0.43	1568	168	1480	125	3650	0.42	0.43
F ^f	-0.34	1572	339	1477	245	2410 ^g	0.33	0.33
Cl	-0.22	1556	87	1486	73	1160	0.21	0.21
t-Bu [∫]	-0.13	1588	18	1473	49	570	0.11	0.12
		1576	17					
Me ^f	-0.10	1592	12	1487	4	440	0.07	0.09
		1574	13					
NO ₂ ^f	+0.17	1604	71	1478	29	1360	0.23	0.18
NMe ₃ ^{+ h}	-0.15	1571	32			990	0.13	0.14
PMe ₃ ^{+ h}	+ 0.08	1578	31			480	0.09	0.10
AsMe ₃ ⁺ ^h		1579	33			510	0.09	
CH ₂ NMe ₃ ⁺ ^h	0.0	1556	8			270	0.0	0.03

^a Of substituents. ^b Peak extinction coefficient $\varepsilon_A = a_{max}/cl$ where a_{max} is absorbance at peak maximum, c is concentration in moles per litre and l is cell path length in cm. ^c A is the integrated intensity of the 1600 and 1585 bands. $A = \sum a_{max}/cl$. ^d $\overline{R}_m = [(A - 340)/19000]^{\frac{1}{2}}$. ^e $f_m(\sigma_R^0) = [(\sigma_R^0 Y)^2 + \sigma_R^0(SiMe_3)^2 + \sigma_R^0(SiMe_3)]^{\frac{1}{2}}$. ^f Run in CCl₄-10% C₆H₆ solution. ^e Previous value A = 2858, see ref. 4. We believe this sample to be impure. ^h Run in Me₂SO (satd. NaCl) - 10% C₆H₆ solution.

J. Organometal. Chem., 43 (1972)

Fig. 1. Plot of observed intensity {in terms of $\overline{R}_m = [(A - 340)/19000]^{\frac{1}{4}}$ against expected intensity {in terms of $f_m(\sigma_R^0) = [(\sigma_R^0 Y)^2 + \sigma_R^0 (SiMe_3)^2 + \sigma_R^0 (SiMe_3)]^{\frac{1}{4}}$ for meta-substituted phenyltrimethylsilanes.

+0.025 thus obtained was used to calculate the expected intensity which is in good agreement with the observed values (Fig. 1).*

para-Disubstituted benzenes

Spectral data for the para derivatives $XC_6H_4SiMe_3$ in Table 4 were treated by

TABLE 4

Substituent	σ_{R}^{0a}	1600 band		1500 b	1500 band		R,ª	$f_p(\sigma_R^0)^e$
		v	ε _A ^b	v	EA D			
NMe ₂ ^f	-0.53	1598	568	1512	283	10100	0.92	0.89
OMe ^ĵ	-0.43	1595	299	1502	363	6000	0.70	0.72
F ^f	-0.34	1590	266	1498	273	3360 ^g	0.52	0.58
Cl	-0.22	1576	164	1483	168	1440	0.33	0.38
NMe ₁ ^{+ h}	-0.15	1590	47			990	0.26	0.27
t-Bu ^ſ	-0.13	1599	80	1492	12	860	0.24	0.24
Me ^f	-0.10	1604	44	1502	23	720	0.22	0.19
CH ₂ NMe ₃ ⁺ ^h	0.0	1593	603			180	0.03	0.03
NO ₂ ^f	+0.17	1595	109			2000	0.15	

SPECIKAL DATA FOR para-SUBSTITUTED PHENYLTRIMETHYLSILAN	ATA FOR para-SUBSTITUTED PHENYLTRIMETHYLSILANE	RAL DATA FO	SPE
---	--	-------------	-----

^o Of substituents. ^b Peak extinction coefficient. $\varepsilon_A = a_{max}/cl$ where a_{max} is absorbance at peak maximum, c is concentration in moles per litre and l is cell path length in cm. ^c A is the integrated intensity of the 1600 and 1585 cm⁻¹ bands. $A = \sum a_{max}/cl$. ^d $\overline{R}_p = [(A - 170)/11800]^{\frac{1}{4}}$. ^e $f_p(\sigma_R^0) = [\sigma_R^0 Y - \sigma_R^0(SiMe_3) + K_{SiMe_3} \cdot \sigma_R^0 D]$. ^f Run in CCl₄-10% C₆H₆ solution. ^o Previous value A = 2697, see ref. 4. Previous integration did not include the overtone band at 1640 cm⁻¹. ^h Run in Me₂SO (satd. NaCl)-10% C₆H₆ solution.

^{*} We consider $\sigma_R^0 = +0.02$ for SiMe₃ to be more reliable than the previous value of -0.04 obtained⁴ from limited data.

$$A_{para} = 11800 [\sigma_{R^1}^0 - \sigma_{R^2}^0]^2 + 170$$

$$A_{max} = 11800 [\sigma_{R^1}^0 - \sigma_{R^2}^0 + K_m \sigma_{R^1}^0]^2 + 170$$
(3)
(4)

eqn. (3)⁴⁰ which applies for *para* disubstituted benzenes in which the two substituents do not mutually interact. The calculated values of the intensities for donor substituents from eqn. (3) differ considerably from the observed intensities. This indicates that eqn. (4)⁴⁰ must be applied where the term $K_x \cdot \sigma_R^0 D$ allows for the resonance interaction between the donor substituent and SiMe₃ acting as an acceptor. The best value of $K_x = 0.62^*$ gave satisfactory agreement with the unit slope line (Fig. 2).

Fig. 2. Plot of observed intensity {in terms of $\bar{R}_p = (A - 170)/11800$ } for para-substituted phenyltrimethylsilanes against expected intensity including interaction {in terms of $f_p = \sigma_R^0 Y - \sigma_R^0 (SiMe_3) + K_{SiMe_3} \cdot \sigma_R^0 Y$ }.

There is considerable evidence of *d*-orbital participation in arylsilicon compounds in which conjugation can occur with a strong donor substituted in the *para* position. The UV intensity criterion of Goodman⁴¹ has been applied by Musker⁴². There is further evidence from UV frequency shifts³², ionisation energies³¹, charge transfer spectra⁵, reduction potentials⁴³ for substituted quinones, ESR spectra^{27,44} acidity measurements⁴⁵, NMR^{3,7,13} and dipole moments^{26,46,47}

^{*} This compares with the previous value of $K_x = 0.48$ based on meta and para FC₆H₄SiMe₃ only⁴.

J. Organometal. Chem., 43 (1972)

REFERENCES

- 1 A. R. Katritzky, R. F. Pinzelli and R. D. Topsom, Tetrahedron submitted.
- 2 J. C. Maire and J. M. Angelelli, Bull. Soc. Chim. Fr., (1969) 1311.
- 3 A. J. Smith, W. Adcock and W. Kitching, J. Amer. Chem. Soc., 92 (1970) 6140.
- 4 J. M. Angelelli, R. T. C. Brownlee, A. R. Katritzky, R. D. Topsom and L. Yakhontov, J. Amer. Chem. Soc., 91 (1969) 4500.
- 5 H. Bock and H. Alt, J. Amer. Chem. Soc., 92 (1970) 1569.
- 6 M. A. Cook, C. Eaborn and D. R. M. Walton, J. Organometal. Chem., 24 (1970) 293.
- 7 J. M. Angelelli, J. C. Maire and Y. Vignollet. J. Organometal. Chem., 22 (1970) 313.
- 8 C. G. Pitt, J. Organometal. Chem., 23 (1970) C35, and see also ref. 9.
- 9 C. G. Pitt, Chem. Commun., (1971) 816.
- 10 W. Hanstein, H. J. Berwin and T. G. Traylor, J. Amer. Chem. Soc., 92 (1970) 7476, and see also ref. 11.
- 11 J. M. Jerkunica and T. G. Traylor, J. Amer. Chem. Soc., 93 (1971) 6278.
- 12 F. K. Cartledge and J. P. Jones, Tetrahedron Lett., (1971) 2193.
- 13 M. E. Freeburger and L. Spialter, J. Amer. Chem. Soc., 93 (1971) 1894.
- 14 F. Mareš, Z. Plzák, J. Hetflejš and V. Chvalovský, Collect. Czech. Chem. Commun., 36 (1971) 2957.
- 15 W. Adcock and W. Kitching, Chem. Commun., (1970) 1163.
- 16 D. G. Anderson, J. R. Chipperfield and D. E. Webster, J. Organometal. Chem., 12 (1968) 323.
- 17 C. Eaborn, Organosilicon Compounds, Butterworths, London, 1960, p. 486; C. Eaborn and S. H. Parker, J. Chem. Soc., (1954) 939; C. Eaborn, J. Chem. Soc., (1956) 4858.
- 18 J. Nagy, J. Réffy, A. Kuszmann-Borbély and K. Pálossy-Becker, J. Organometal. Chem., 7 (1967) 393.
- 19 B. G. Ramsey, Electronic Transitions in Organometalloids, Academic Press, London, 1969.
- 20 H. Bock and H. Alt, Angew. Chem. Int. Ed. Engl., 6 (1967) 942.
- 21 A. R. Bassindale, C. Eaborn and D. R. M. Walton, J. Organometal. Chem., 21 (1970) 91.
- 22 A. R. Katritzky and R. D. Topsom, Angew. Chem. Int. Ed. Engl., 9 (1970) 87.
- 23 R. T. C. Brownlee, R. E. J. Hutchinson, A. R. Katritzky, T. T. Tidwell and R. D. Topsom, J. Amer. Chem. Soc., 90 (1968) 1757.
- 24 A. R. Katritzky, M. V. Sinnott, T. T. Tidwell and R. D. Topsom, J. Amer. Chem. Soc., 91 (1969) 628.
- 25 A. R. Katritzky, R. F. Pinzelli, M. V. Sinnott and R. D. Topsom, J. Amer. Chem. Soc., 92 (1970) 6861.
- 26 H. H. Huang and K. M. Hui, J. Organometal. Chem., 6 (1966) 504.
- 27 J. A. Bedford, J. R. Bolton, A. Carrington and R. H. Prince, Trans. Faraday Soc., 59 (1963) 53.
- 28 Yu. P. Egorov and R. A. Loktionova, Teor. Eksp. Khim., 1 (1965) 160.
- 29 V. A. Petukhov, V. F. Mironov and A. L. Kravchenko, Izv. Akad. Nauk SSSR, Ser Khim., (1966) 156.
- 30 V. A. Petukhov, V. F. Mironov and P. P. Shorygin, Izv. Akad. Nauk SSSR, Ser. Khim., (1964) 2203.
- 31 H. Bock and H. Seidl, Angew. Chem. Int. Ed. Engl., 6 (1967) 1085.
- 32 H. Alt, H. Bock, F. Gerson and J. Heinzer, Angew. Chem. Int. Ed. Engl., 6 (1967) 941.
- 33 H. Bock, H. Seidl and M. Fochler, Chem. Ber., 101 (1968) 2815.
- 34 H. Bock and H. Seidl, J. Chem. Soc., B. (1968) 1158.
- 35 H. Bock and H. Seidl, J. Amer. Chem. Soc., 90 (1968) 5694; 91 (1969) 355.
- 36 H. H. Jaffe and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, John Wiley, New York, 1962, p. 474.
- 37 A. R. Bassindale, C. Eaborn, D. R. M. Walton and D. J. Young, J. Organometal. Chem., 20 (1969) 49.
- 38 M. A. Cook, C. Eaborn and D. R. M. Walton, J. Organometal. Chem., 23 (1970) 85.
- 39 H. Sakurai, S. Deguchi, M. Yamagata, S.-I. Morimoto, M. Kira and M. Kumada, J. Organometal. Chem., 18 (1969) 285.
- 40 P. J. Q. English, A. R. Katritzky, T. T. Tidwell and R. D. Topsom, J. Amer. Chem. Soc., 90 (1968) 1767.
- 41 L. Goodman, A. H. Konstam and L. H. Sommer, J. Amer. Chem. Soc., 87 (1965) 1012.
- 42 W. K. Musker and G. B. Savitsky, J. Phys. Chem., 71 (1967) 431.
- 43 H. Bock and H. Alt, Angew. Chem. Int. Ed. Engl., 6 (1967) 941.
- 44 F. Gerson, J. Heinzer, H. Bock, H. Alt and H. Seidl, Helv. Chim. Acta, 51 (1968) 707.
- 45 J. Chatt and A. A. Williams, J. Chem. Soc., (1956) 688; F. Mareš and A. Streitwieser, Jr., J. Amer. Chem. Soc., 89 (1967) 3770; D. E. Fenton and J. J. Zuckerman, Inorg. Chem., 7 (1968) 1323.
- 46 H. Soffer and T. De Vries, J. Amer. Chem. Soc., 73 (1951) 5817.
- 47 H. Sakurai and M. Ohtsuru, J. Organometal. Chem., 13 (1968) 81.
- 48 T. G. Traylor, W. Hanstein, H. J. Berwin, N. A. Clinton, and R. S. Brown, J. Amer. Chem. Soc., 93 (1971) 5715.
- 49 M. Jakoubková, J. Hetílejš and V. Chvalovský, Collect. Czech. Chem. Commun., 34 (1969) 2476.
- J. Organometal. Chem., 43 (1972)